As predicted by the theory of general relativity, the passage of gravitational waves can leave a measurable change in the relative positions of objects. This physical phenomenon, known as gravitational wave memory, could potentially be leveraged to study both...
Astronomy & Space
New method could allow multi-robot teams to autonomously and reliably explore other planets
While roboticists have developed increasingly sophisticated systems over the past decades, ensuring that these systems can autonomously operate in real-world settings without mishaps often proves challenging. This is particularly difficult when these robots are...
Simulations show that exoplanets heated at deeper depths by their host stars display markedly different weather patterns
For many years, most astrophysical models assumed that planets beyond our solar system, known as exoplanets, are heated at similar depths by their host stars (i.e., stars like the sun around which planetary systems are formed). Analyses of recent observations by...
A three-step mechanism explaining ultraviolet-induced CO desorption from CO ice
The desorption of CO ice induced by ultraviolet (UV) radiation is a phenomenon that occurs in some cold parts of the universe, which has often also been replicated in laboratory settings. While this phenomenon is now well-documented, the molecular mechanisms...
New constraints on the presence of ultralight dark matter in the Milky Way
Dark matter, composed of particles that do not reflect, emit or absorb light, is predicted to make up most of the matter in the universe. Its lack of interactions with light, however, prevents its direct detection using conventional experimental methods.
A new approach to reduce the risk of losing solar-powered rovers on the moon
NASA and other space agencies worldwide periodically send robots and automated vehicles into space to explore planets and other celestial objects in our solar system. These missions can greatly improve our understanding of the environment and resources in other parts...
Study sets new constraints on the kinetic mixing of hidden photon dark matter
As dark matter is comprised of particles that do not absorb, emit or reflect light, it cannot be observed directly with the methods used to observe conventional matter. In recent years, astrophysicists worldwide have thus been devising methods that could help to...
Research group unveils properties of cosmic-ray sulfur and the composition of other primary cosmic rays
Charged cosmic rays, high-energy clusters of particles moving through space, were first described in 1912 by physicist Victor Hess. Since their discovery, they have been the topic of numerous astrophysics studies aimed at better understanding their origin,...
Could dark photon dark matter be directly detected using radio telescopes?
Dark matter, matter in the universe that does not emit, absorb or reflect light, cannot be directly detected using conventional telescopes or other imaging technologies. Astrophysicists have thus been trying to identify alternative methods to detect dark matter for...
Could quantum fluctuations in the early universe enhance the creation of massive galaxy clusters?
Astrophysicists have been trying to understand the formation of cosmological objects and phenomena in the universe for decades. Past theoretical studies suggest that quantum fluctuations in the early universe, known as primordial quantum diffusion, could have given...