Reducing carbon dioxide (CO₂) emissions is a crucial step towards mitigating climate change and protecting the environment on Earth. One proposed technology for reducing CO₂ emissions, particularly from power plants and industrial establishments, is carbon capture.
Nanotechnology
The demonstration of vacuum levitation and motion control on an optical-electrostatic chip
The levitation of microscopic objects in vacuum and the control of their movements while they are suspended was first demonstrated several decades ago. Since then, various research groups have been working on new approaches to control levitated objects in vacuum with...
A machine learning-based approach to discover nanocomposite films for biodegradable plastic alternatives
The accumulation of plastic waste in natural environments is of utmost concern, as it is contributing to the destruction of ecosystems and is causing harm to aquatic life. In recent years, material scientists have thus been trying to identify all-natural alternatives...
An approach to design high-power lithium sulfur batteries
Lithium–sulfur (Li–S) batteries are a promising alternative to lithium–ion batteries (LiBs), the most common rechargeable battery technology. As sulfur is abundant on Earth, these batteries could be cheaper and more environmentally friendly than LiBs, while also...
A method to fabricate long rolls of subnanocomposite dielectric polymers
Engineers and material scientists have been trying to develop increasingly advanced devices, to meet the growing needs of the electronics industry. These devices include electrostatic capacitors, devices that can store electrical energy in a dielectric between a pair...
Team develops transistors with sliding ferroelectricity based on polarity-switchable molybdenum disulfide
Over the past few years, engineers have been trying to devise alternative hardware designs that would allow a single device to both perform computations and store data. These emerging electronics, known as computing-in-memory devices, could have numerous advantages,...
Biohybrid microrobots could remove micro- and nano-plastics from aquatic environments
Seas, oceans, rivers, and other bodies of water on Earth have become increasingly polluted over the past decades, and this is threatening the survival of many aquatic species. This pollution takes a wide range of forms, including the proliferation of so-called micro...
Team develops new gold nanocluster-rich titanium dioxide photocatalyst for the oxidative coupling of methane
The hydrocarbon methane is highly abundant on Earth, yet its release is now known to contribute to surges in temperature and climate change. In recent years, researchers have been trying to devise reliable methods to directly convert methane into other fuels and...
A dynamic matrix with DNA-encoded viscoelasticity to support the development of organoids and other biological tissues
Over the past few decades, material scientists and chemists have been working on designing increasingly sophisticated materials for a wide range of technological and scientific applications. These materials include synthetic polymers and hydrogels that could be...
Nanoelectromechanical resonators based on hafnia–zirconia–alumina superlattices with gigahertz spectrum coverage
Newly developed atomic engineering techniques have opened exciting opportunities for enabling ferroelectric behavior in high-k dielectrics, materials that have a high dielectric constant (i.e., kappa or k) compared to silicon. This could in turn inform the development...