Multiterminal Josephson junctions, nanoscale devices with unique electronic properties, comprise non-superconducting metallic material coupled to three or more superconducting leads. These devices have proved to be promising platforms for the exploration of...
Condensed Matter
Optical spring enables programmable defect mode in new mechanical crystal
Mechanical crystals, also known as phononic crystals, are materials that can control the propagation of vibrations or sound waves, just like photonic crystals control the flow of light. The introduction of defects in these crystals (i.e., intentional disruptions in...
Pioneering approach expands possibilities for measuring quantum geometry in solids
Understanding and reliably measuring the geometric properties of quantum states can shed new light on the intricate underpinning of various physical phenomena. The quantum geometric tensor (QGT) is a mathematical object that provides a detailed description of how...
New spin quantum battery can be charged without an external field
Over the past few years, some researchers have been working on alternative energy storage systems that leverage the principles of quantum mechanics. These systems, known as quantum batteries, could be more efficient and compact than conventional battery technologies,...
Promising strategy leverages atomic displacements to control quantum properties of a vanadate perovskite
Perovskites, materials with a crystal structure that mirrors that of the mineral calcium titanate CaTiO₃, exhibit properties that are advantageous for developing various technologies. For instance, they have proved promising for designing photovoltaic (PV) systems and...
2D graphene spin valve leverages van der Waals magnet proximity for efficient spintronics
Graphene, particularly in its purest form, has long been considered a promising material for developing spintronic devices. These devices leverage the intrinsic angular momentum (i.e., spin), as opposed to the charge, of electrons to transmit and process data.
Physicists identify key mechanism behind chiral charge density wave in TiSe₂
Chirality is a property of some molecules, subatomic particles, living organisms and other physical or biological systems. This property entails a lack of mirror symmetry in these systems' underlying structures.
Physicists report emergence of ferromagnetism at onset of Kondo breakdown in moiré bilayer lattices
Moiré superlattices are materials consisting of two layers stacked on top of each other with either a small rotational misalignment or a lattice mismatch between them. The Kondo lattice model, on the other hand, describes systems in which conduction electrons interact...
Physicists reveal nonlinear transport induced by quantum geometry in planar altermagnets
In recent years, many physicists and materials scientists have been studying a newly uncovered class of magnetic materials known as altermagnets. These materials exhibit a unique type of magnetism that differs from both conventional ferromagnetism and...
Theoretical study demonstrates existence of giant photocaloric effects in ferroelectric perovskites
Solid-state cooling is a promising alternative cooling technique that does not rely on the use of gases or liquids, like conventional refrigeration systems, but instead utilizes the properties of solid materials to refrigerate. This alternative cooling approach could...