A long-standing challenge in the field of quantum physics is the efficient synchronization of individual and independently generated photons (i.e., light particles). Realizing this would have crucial implications for quantum information processing that relies on...
PHYS.ORG
Researchers demonstrate scaling of aligned carbon nanotube transistors to below sub-10 nm nodes
Carbon nanotubes, large cylindrical molecules composed of hybridized carbon atoms arranged in a hexagonal structure, recently attracted significant attention among electronics engineers. Due to their geometric configuration and advantageous electronic properties,...
A quantum radar that outperforms classical radar by 20%
Quantum technologies, a wide range of devices that operate by leveraging the principles of quantum mechanics, could significantly outperform classical devices on some tasks. Physicists and engineers worldwide have thus been working hard to achieve this long-sought...
PandaX sets new constraints on the search for light dark matter via ionization signals
Teams of physicists worldwide have been trying to detect dark matter, an elusive type of matter that does not emit, absorb, or reflect light. Due to its lack of interactions with electromagnetic forces, this matter is very difficult to observe directly, thus most...
New method to search for strongly interacting dark matter inside neutrino detectors
Physicists worldwide are trying to detect dark matter (DM) particles and their interactions with visible matter using various strategies and detectors. As these particles do not emit, reflect or absorb light, they have so far proved to be very difficult to observe,...
A solid-state quantum microscope that controls the wave functions of atomic quantum dots in silicon
Over the past decades, physicists and engineers have been trying to develop various technologies that leverage quantum mechanical effects, including quantum microscopes. These are microscopy tools that can be used to study the properties of quantum particles and...
Study sets new constraints on the kinetic mixing of hidden photon dark matter
As dark matter is comprised of particles that do not absorb, emit or reflect light, it cannot be observed directly with the methods used to observe conventional matter. In recent years, astrophysicists worldwide have thus been devising methods that could help to...
Study reports melting curve of superionic ammonia under icy planetary interior conditions
Icy planets, such as Uranus (U) and Neptune (N), are found in both our solar system and other solar systems across the universe. Nonetheless, these planets, characterized by a thick atmosphere and a mantle made of volatile materials (e.g., hydrogen water, ammonia,...
Research group unveils properties of cosmic-ray sulfur and the composition of other primary cosmic rays
Charged cosmic rays, high-energy clusters of particles moving through space, were first described in 1912 by physicist Victor Hess. Since their discovery, they have been the topic of numerous astrophysics studies aimed at better understanding their origin,...
A quantum Szilard engine that can achieve two-level system hyperpolarization
Quantum computers, machines that perform computations exploiting quantum mechanical phenomena, could eventually outperform classical computers on some tasks, by utilizing quantum mechanical resources such as state superpositions and entanglement. However, the quantum...