Researchers at the Harvard-MIT Center for Ultracold Atoms have recently demonstrated a one-dimensional (1-D) magneto-optical trap (MOT) of polar free radical calcium monohydroxide (CaOH). This technique, outlined in a paper published in Physical Review Letters, was...
Physics
A quantum metasurface that can simultaneously control multiple properties of light
Metasurfaces are artificial materials designed at the nanoscale, which can control the scattering of light with exceptionally high precision. Over the past decade or so, these materials have been used to create a variety of technological tools ranging from sensors to...
A new material to print mechanically robust and shape-shifting structures
In recent years, 3-D printing has opened up interesting new possibilities for the large-scale production of electronic components, as well as of a variety of other objects. To this end, research teams worldwide have been trying to create materials and structures that...
A perovskite-based diode capable of both light emission and detection
Light sources and detectors are key components of countless technological devices on the market today. For instance, light emitting diodes (LEDs) are often used as a source of light in displays and other technologies, while photodiodes are used to detect light in...
Searching for discrete time crystals in classical many-body systems
Our current, well-established understanding of phases of matter primarily relates to systems that are at or near thermal equilibrium. However, there is a rich world of systems that are not in a state of equilibrium, which could host new and fascinating phases of matter.
A theoretical approach to understand the mechanisms of 3-D spatiotemporal mode-locking
Laser technology confines light inside a resonator containing a gain medium, a material with quantum properties that can amplify light. As laser resonators are generally far larger than the wavelength of light, lasing inside their cavities can occur in a wide range of...
Cooling of a trapped ion to the quantum regime
Neutral atoms and charged ions can be cooled down to extremely low temperatures (i.e., to microkelvins, 1 millionth of a degree above absolute zero) using laser techniques. At these low temperatures, the particles have often been found to behave in accordance with the...
Compact dark object search: Scanning Earth’s core with superconducting gravimeters
Physics theory suggests that the universe is made up in great part by a type of matter that does not emit, absorb or reflect light, and hence cannot be observed using conventional detection methods. This type of matter, referred to as dark matter, has so far never...
3-D imaging the flavor content of the nucleon
The Jefferson Lab Hall A Collaboration, in an experiment led by researchers at Faculté des Sciences de Monastir in Tunisia, Institut de Physique Nucléaire d'Orsay in France and Old Dominion University in the United States, has recently gathered the first experimental...
The ‘electronic Griffiths phase’ in solid-state physical systems
Most theories of solid state and soft matter physics were developed independently; thus, a few physical concepts are applicable to both. Recent research, however, particularly a study by Elbio Dagotto, found that correlated electrons in solid-state physical systems...