The Higgs boson, the fundamental subatomic particle associated with the Higgs field, was first discovered in 2012 as part of the ATLAS and CMS experiments, both of which analyze data collected at CERN's Large Hadron Collider (LHC), the most powerful particle...
Quantum Physics
Recent searches for light fermionic dark matter by the PandaX-4T collaboration
Teams of astrophysicists worldwide are trying to observe different possible types of dark matter (DM), hypothetical matter in the universe that does not emit, absorb or reflect light and would thus be very difficult to detect. Fermionic DM, however, which would be...
The direct measurement of a proton’s generalized polarizabilities in the strong quantum chromodynamics regime
Quantum chromodynamics is an area of study that explores the strong interactions between quarks mediated by gluons. Quarks are elementary particles with an electric charge, which are building blocks of composite particles, such as hadrons and protons.
Study proves a generalization of Bell’s theorem: Quantum correlations are genuinely tripartite and nonlocal
Quantum theory predicts the existence of so-called tripartite-entangled states, in which three quantum particles are related in a way that has no counterpart in classical physics. Theoretical physicists would like to understand how well new theories, alternatives to...
Exploring the decay processes of a quantum state weakly coupled to a finite-size reservoir
In quantum physics, Fermi's golden rule, also known as the golden rule of time-dependent perturbation theory, is a formula that can be used to calculate the rate at which an initial quantum state transitions into a final state, which is composed of a continuum of...
The coherent simulation of a quantum phase transition in a programmable 2,000 qubit Ising chain
Quantum computers have the potential to outperform classical computers on several complex tasks, yet many challenges will need to be overcome before they reach their full potential. In the meantime, physicists and computer scientists have been trying to realistically...
A new method to enable efficient interactions between photons
Photons, particles that represent a quantum of light, have shown great potential for the development of new quantum technologies. More specifically, physicists have been exploring the possibility of creating photonic qubits (quantum units of information) that can be...
Evidence of excitonic insulators in moiré superlattices
Excitons are quasiparticles that are formed in insulators or semiconductors when an electron is promoted to a higher energy band, leaving a positively charged hole behind.
A precise measurement of the neutral weak form factor of Ca-48
The CREX Collaboration, a large group of researchers from different universities worldwide who are involved in the Calcium Radius Experiment (CREX), has recently collected a precise measurement of the broken mirror symmetry in the elastic scattering of longitudinally...
Researchers realize two coherently convertible qubit types using a single ion species
Trapped ion computers are quantum computers in which the qubits (quantum units of information) are ions trapped by electric fields and manipulated with lasers. To avoid crosstalk between nearby qubits, physicists and engineers design these computers using two...