Polaritons are quasiparticles that are formed when photons couple strongly with excitations of matter. These quasi-particles, which are half-light and half-matter, underpin the functioning of a wide range of emergent photonic quantum systems, including...
Quantum Physics
Study achieves the optical coherent manipulation of circular Rydberg states
Rydberg atoms are excited atoms that contain one or more electrons with a high principal quantum number. Due to their large size, long-range dipole-dipole interactions and strong coupling to external fields, these atoms have proved to be promising systems for the...
Study highlights the possibility of building wave-shape-tolerant qubit gates
Quantum computers, machines that leverage quantum states to perform computations and store data, could soon revolutionize the computing industry, achieving significantly greater speeds and performance than existing computers. While countless companies worldwide,...
A new technique to detect collisions between single atom-ion pairs
Quantum chemistry is the branch of chemistry that explores the applications of quantum mechanics to chemical systems. Studies in this field can help to better understand the behavior of pairs or groups of atoms in a quantum state as well as the chemical reactions...
A fully optical attoclock to image tunnelling wavepackets
Attoclocks, or attosecond clocks, are instruments that can measure time intervals on the attosecond scale by measuring the time it takes for electrons to tunnel out of atoms. The attosecond procedure was first introduced by a research team led by Ursula Keller in...
Physicists test real quantum theory in an optical quantum network
Quantum theory was originally formulated using complex numbers. Nonetheless, when replying to a letter by Hendrik Lorenz, Erwin Schrödinger (one of its founding fathers), wrote: "Using complex numbers in quantum theory is unpleasant and should be objected to. The wave...
Study redefines what information is important in quantum measurements
Researchers at Korea Institute of Science and Technology (KIST) have recently tried to capture the interplay between different types of information that are important while collecting quantum measurements, namely information gain, disturbance and reversibility. Their...
Evidence of a quantum phase transition without symmetry breaking in cerium-cobalt-indium 5
Over the past few decades, many condensed matter physicists have conducted research focusing on quantum phase transitions that are not clearly associated with a broken symmetry. One reason that these transitions are interesting is that they might underpin the...
Study explores phase transitions in a confining dark sector using QCD simulations
Researchers at Massachusetts Institute of Technology, Hebrew University of Jerusalem, and Ohio state University recently carried out a study examining the possible effects of a first-order phase transition in a confining dark sector with heavy dark quarks. Using...
Study predicts the behavior of a Kondo cloud in a superconductor
In recent years, many physicists worldwide have been investigating the behavior of hybrid nanostructures. These are systems that are typically made up of two or more materials. Special attention in this class of structures is paid to magnetic impurities interacting...