A time crystal is a unique and exotic phase of matter first predicted by the American physicist Frank Wilczek in 2012. Time crystals are temporal analogs of more conventional space crystals, as both are based on structures characterized by repeating patterns.
Quantum Physics
Study unveils strain-induced quantum phase transitions in magic-angle graphene
Over the past few years, many physicists and material scientists worldwide have been investigating the properties and characteristics of magic-angle twisted bilayer graphene (MATBG). MATBG is a strongly correlated material that was first experimentally realized in...
The demonstration of ultrafast switching to an insulating-like metastable state
In recent years, physicists and electronics engineers have been trying to devise strategies to control or produce quantum states of matter in different materials. Such strategies could ultimately prove valuable for the development of new technological devices.
The realization of topologically protected valley-dependent quantum photonic chips
The field of topological photonics, specialized in the development of a class of materials known as photonic topological insulators, has advanced considerably over the past few decades. Photonic topological insulators have many promising qualities, including the...
Researchers propose the use of quantum cascade lasers to achieve private free-space communications
Free-space optical communication, the communication between two devices at a distance using light to carry information, is a highly promising system for achieving high-speed communication. This system of communication is known to be immune to electromagnetic...
A framework to simulate the same physics using two different Hamiltonians
Researchers at Okinawa Institute of Science and Technology Graduate University in Japan have recently been investigating situations in which two distinct Hamiltonians could be used to simulate the same physical phenomena. A Hamiltonian is a function or model used to...
A two-qubit engine powered by entanglement and local measurements
Researchers at Institut Néel-CNRS, University of Saint Louis and University of Rochester recently realized a two-qubit engine fueled by entanglement and local measurements. This engine's unique design, outlined in a paper published in Physical Review Letters, could...
A new method to generate and control orbital angular momentum beams
Artificial spin ices (ASIs) are magnetic metamaterials with exotic properties that are dependent on their geometries. Over the past few years, many physicists have studied these materials, as their unique properties could be advantageous for a number of applications.
The observation of Kardar-Parisi-Zhang hydrodynamics in a quantum material
Classical hydrodynamics laws can be very useful for describing the behavior of systems composed of many particles (i.e., many-body systems) after they reach a local state of equilibrium. These laws are expressed by so-called hydrodynamical equations, a set of...
Study identifies a new type of diurnal effect for cosmic ray-boosted dark matter
Over the past few decades, astrophysicists and cosmologists have gathered various observations hinting at the existence of dark matter (DM), a type of matter that does not absorb, reflect or emit light, and thus cannot be detected using conventional techniques for...