Researchers at CEA/CNRS/Université Paris Saclay, University College London and ETH Zurich have recently devised a new method to control the temperature of a spin ensemble by increasing electron spin polarization above its thermal equilibrium value. Their research,...
Quantum Physics
The observation of photon-assisted tunneling signatures in Majorana wires
Researchers at the University of Copenhagen and Microsoft Quantum Lab Copenhagen have recently carried out a study investigating the potential of Majorana zero modes, zero-energy quasiparticle states that can be found in superconductive hybrid nanowires, as a means of...
Imaging nematic transitions in iron pnictide superconductors
Researchers at Stanford University have recently carried out an in-depth study of nematic transitions in iron pnictide superconductors. Their paper, published in Nature Physics, presents new imaging data of these transitions collected using a microscope they invented,...
Quantum autoencoders to denoise quantum measurements
Many research groups worldwide are currently trying to develop instruments to collect high-precision measurements, such as atomic clocks or gravimeters. Some of these researchers have tried to achieve this using entangled quantum states, which have a higher...
The realization of a 1-D magneto-optical trap of polyatomic molecules
Researchers at the Harvard-MIT Center for Ultracold Atoms have recently demonstrated a one-dimensional (1-D) magneto-optical trap (MOT) of polar free radical calcium monohydroxide (CaOH). This technique, outlined in a paper published in Physical Review Letters, was...
Highly efficient solution-processed upconversion photodetectors based on quantum dots
Researchers at ShanghaiTech University, the University of Toronto and the Chinese Academy of Sciences have recently developed new solution-processed upconversion photodetectors, which are a class of devices that can detect or respond to light. These devices, presented...
A quantum metasurface that can simultaneously control multiple properties of light
Metasurfaces are artificial materials designed at the nanoscale, which can control the scattering of light with exceptionally high precision. Over the past decade or so, these materials have been used to create a variety of technological tools ranging from sensors to...