Superconductivity is the ability of some materials to conduct a direct electrical current (DC) with almost no resistance. This property is highly sought after and favorable for various technological applications, as it could boost the performance of different...
Superperconductivity
The superconducting diode effect in a device based on coupled Josephson junctions
The so-called superconducting (SC) diode effect is an interesting nonreciprocal phenomenon, occurring when a material is SC in one direction and resistive in the other. This effect has been the focus of numerous physics studies, as its observation and reliable control...
Researchers observe ubiquitous superconductive diode effect in thin superconducting films
The so-called superconducting (SC) diode effect has recently attracted significant attention within the physics research community, due to its potential value for developing new technologies. This effect provides a key example of nonreciprocal superconductivity, as...
A model system of topological superconductivity mediated by skyrmionic magnons
Topological superconductors are superconducting materials with unique characteristics, including the appearance of so-called in-gap Majorana states. These bound states can serve as qubits, making topological superconductors particularly promising for the creation of...
Study unveils a large tunable drag response between a normal conductor and a superconductor
The Coloumb drag is a phenomenon that affects two electronic circuits, whereby a charge current in one circuit induces a responsive current in a neighboring circuit solely through so-called Coloumb interactions. These are electrostatic interactions between electric...
Study observes spin-orbit-parity coupled superconductivity in thin 2M-WS2
In recent years, many physicists and material scientists have been studying superconductors, materials that can conduct direct current electricity without energy loss when cooled under a particular temperature. These materials could have numerous valuable...
Study demonstrates tailored Ising superconductivity in intercalated bulk niobium diselenide
When 2D layered materials are made thinner (i.e., at the atomic scale), their properties can dramatically change, sometimes resulting in the emergence of entirely new features and in the loss of others. While new or emerging properties can be very advantageous for the...
Electrons with Planckian scattering in strange metals follow standard rules of orbital motion in a magnet
Strange metals, or non-Fermi liquids, are distinct states of matter that have been observed in different quantum materials, including cuprate superconductors. These states are characterized by unusual conductive properties, such as a resistivity that is linearly...
The coherent simulation of a quantum phase transition in a programmable 2,000 qubit Ising chain
Quantum computers have the potential to outperform classical computers on several complex tasks, yet many challenges will need to be overcome before they reach their full potential. In the meantime, physicists and computer scientists have been trying to realistically...
Researchers measure a signature of superconducting interference at the atomic scale
Superconductors, materials that can conduct electricity with no resistance at low temperatures, have many interesting and advantageous properties. In recent years, physicists and computer scientists have been investigating their potential for different applications,...