Quantum computers, devices that exploit quantum phenomena to perform computations, could eventually help tackle complex computational problems faster and more efficiently than classical computers. These devices are commonly based on basic units of information known as...
Superperconductivity
Study observes the coexistence of topological edge states and superconductivity in stanene films
Stanene is a topological insulator comprised of atoms typically arranged in a similar pattern to those inside graphene. Stanene films have been found to be promising for the realization of numerous intriguing physics phases, including the quantum spin Hall phase and...
Thermalization and information scrambling in a superconducting quantum processor
In recent years, physicists have carried out extensive studies focusing on quantum technology and quantum many-body systems. Two out-of-equilibrium dynamical processes that have attracted particular attention in this field are quantum thermalization and information...
Remarkably strong pairing of charge carriers in bilayer antiferromagnetic Mott insulators
Over the past few years, many physicists and material scientists have been investigating superconductivity, the complete disappearance of electrical resistance observed in some solid materials. Superconductivity has so far been primarily observed in materials that are...
A thermal superconducting quantum interference proximity transistor
Superconductors are materials that can achieve a state known as superconductivity, in which matter has no electrical resistance and does not allow the penetration of magnetic fields. At low temperatures, these materials are known to be highly effective thermal...
Study shows how superconductivity can be switched on and off in superconductors
Superconductors are materials that can enter a state of no electrical resistance, through which magnetic fields cannot penetrate. Due to their interesting properties, many material scientists and engineers have been exploring the potential of these materials for a...
Study improves the understanding of superconductivity in magic-angle twisted trilayer graphene
In recent years, physicists and material scientists have uncovered several new platforms for studying correlated phases of matter, such as superconductivity and the correlated insulator phase. Among them is magic-angle twisted trilayer graphene, a superconductor...
Study introduces the intrinsic superconducting diode effect
In 2020, Prof. Teruo Ono and his colleagues at Kyoto University reported the very first observation of a magnetically controllable, superconducting diode effect in an artificial superlattice. Their findings, published in Nature, paved the way for other studies...
Study predicts the behavior of a Kondo cloud in a superconductor
In recent years, many physicists worldwide have been investigating the behavior of hybrid nanostructures. These are systems that are typically made up of two or more materials. Special attention in this class of structures is paid to magnetic impurities interacting...
Study gathers evidence of topological superconductivity in the transition metal 4Hb-TaS2
Topological superconductors are a class of superconducting materials characterized by sub-gap zero energy localized modes, known as Majorana boundary states (MBSs). These materials are promising for the development of quantum computing technology.